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An oscillating component of the quasisteady cylindrical temperature field developing in the heating of sofids 
by intense modulated heat sources is investigated. 

Recently the creation of new technologies based on modulated laser and electron beams [I-31 has 

stimulated studies of the interaction of intense periodic pulse heat sources with solids [4-6 ]. Their urgency is also 

dictated by the need to use radio-frequency temperature fluctuations to measure the properties of films and thin 

foils [7, 8 ] as well to forecast the behavior of construction and device elements under periodic heat loads [9, i0 ]. 

The modeling of such an interaction required, as a rule, the solution of a rather complicated nonlinear 

problem, which can be realized only by using computation methods [4, 5 ]. However, in the particular, but important 

case of a quasisteady thermal regime the problem can be linearized to yield an exact analytical solution. For 

two-dimensional bodies, this solution was obtained in [6-8 ]. In [7 ], it was shown that the main difference of 

periodic pulsed heating from sinusoidal heating is a dependence of the form of the oscillating component of the 

temperature field O on the frequency characteristics of the heating process. In this case, the frequency spectra of 

an external heat source and the oscillating component have been found to coincide, which was predicted in [6 ]. 

For cylindrical solid bodies, the form of temperature fluctuations O depends on the pulse repetition 
frequency co, as was found experimentally in [ 11, 12 ]. However, nobody has succeeded in revealing this dependence 

analytically. Therefore it is still unclear how the stable forms of temperature fluctuations found for two-dimensional 

bodies in [7 ] develop in this case. In this connection, the present work is aimed at constructing a mathematical 

model of the quasisteady thermal regime that develops in axisymmetrical periodic pulsed heating of solid and hollow 

cylinders and a body with a cylindrical cavity. The model has been used for the investigation of temperature 

fluctuations O within wide ranges of co and sample thicknesses. 

To linearize the problem, we represent the temperature field T as a sum of the steady T and oscillating O 

components T(t, r) = T(r) + O(t, r). At I OI << T, the equation for the oscillating component is as follows 

00  020 1 0 0 )  a d ( r d T )  (1) 
- a  ~ + - -  + E ( r ) ;  E ( r ) -  - -  . 

Ot Or 2 r Or r dr dr 

Unlike the one-dimensional case [6 ], the remainder term E(r) in the input equation cannot be neglected, 

even under the assumption that the temperature distribution with respect to the radius is "T(r) = ~ lr + 1/2772 r2 with 

small r/l and r/2. Indeed, for this case, with the exception of more complicated distributions, the requirement 

E(r )=a(r l l / r+2r lx )<<a 0 ( r O O ) r - ~  -~r 

means that r-lT(r) must serve as a linear function with small coefficients, i.e., it is required that lira r-IT(r) and 
r ~  + 0  

rolT(r0) to be small. While the first assumption seems reasonable, the second assumption does not follow from the 

input equation in any way, and it is unclear physically. Therefore, in the present work we examine a general 

statement of the problem with subsequent evaluation of the remainder terms of its solution. 
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Fig. 1. Periodic pulsed heating of solid cylinder (a), cylindrical cavity (b), 
and hollow cylinder (c). 

Linearization of boundary conditions, as in [6 ], yields 

+ ~ e  = ~ (0  ; 
r=r 0 

( t ) = - ~ + q ( t ) ,  (2) 

q ( t ) = q ( t + v t n ) ,  v =  1 ,  2 . . . ;  

- 4  
= a~ [_+ a~'~ + (~  4 _ 7, 0 ) ]~=ro, 

where the plus and minus signs stand for a solid cylinder and a body with a cylindrical cavity, respectively; ~ and 
q(t)  are the mean and instantaneous powers released upon heating. 

At first we will consider an oscillating regime in the solid cylinder 0 < r _< ro (Fig. la). Having performed 
the Laplace transformation in (1) and (2), we arrive at 

d20 + 1 dO + 2 O = r / ( r ) ,  O = O ( p ,  r) ,  (3) 
- -  _ _  * . 

dr  2 r dr- 

( )1 d ~  ~o + E ~k 
2-dT-r + a O  = q ( P ) ;  q ( P ) = P  k=-~o P - / ~  

r = r 0 
k~O 

It = i ~ ; 77 (r) = - E ( r ) / a  ; w k = 2 n k / t  n ,  

where ck and ~0 are expansions of ~(t) into a Fourier series and for periodic pulse loading have the form 

sin ~k 
c k = q 0 ~ e x p ( -  /~k); ~Pk =:~kT; k ~ : 0 ;  

~ 0 = - q  + c 0 ;  c0=Tqo- 

Here ~, = t u / t  n is the pulse ratio, and tu and tn are the pulse duration and its repetition frequency, respectively. In 
this case, the experimentally observed coincidence of the frequency spectra of the external heat source and the 
oscillatory temperature regime in a quasisteady state results in the relations ~o -- 0 and ~ = Yq0. 

A general solution of problem (3) is 
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[ r~ ~ur) r2fur) 
rl O~p) r2 ~p)  

(p, 0 = E r (p) r, (fir) + f t/ (/9) dp, 

I �9 t 

]/~r I @p) ~ r  2 (,up) 

where I ' i (~r)  = H~0($lr) is a zeroth-order Hankel function. Using the Liouville formula, we obtain from (4) 

O ) ( p ,  r) = ~ c i ( p )  F i ( l zr )  + / z - 1 7 "  1(r ) ;  
i=1,2 

7"1 (r) = g 2 (r) r I ~ur) - x I (r) r z (,ur) ; 

r r 

x I (r) = f p r  I (up)  rl (p)  dp ; x 2 (r) = f p r  2 (up)  ~! (P) d p .  
0 0 

The regularity condition at r ~ + 0  yields Cl = c2 = 1 / 2 c  and 

ci (P) ['i (fir) = c 09) Jo ~ r )  , 
i=I,2 

while the boundary condition gives an expression for the integration constant c(p), so that 

(4) 

(5) 

-1  
~'(P) Jo (ur) - p 7'2 (ro) + / - 1 7 "  1 (r) ,  (6) 

03 (p , r) = a j  0 (uro) _ 2/z./1 (uro) 

~Z (r0) = [/]'~1 (r) + Ct~l ( r ) ] r = r o .  

The functions 7"1,2 that describe the influence of the remainder term E(r) can be estimated as 7"1,2 ~ o ( 1 / v ~ ) ,  

p --, oo. This indicates that the correction introduced by the remainder term into the solution has the form o (1), 

t --, oo and E(r) can be neglected in Eq. (1). Therefore, assuming that the function aJo(/zro ) - 2/ZJl~Ur0) in (6) has 

zeros only in the half-plane Re p < 0 and that the path of integration can be transformed as in [6 ], we obtain 

200 x~ sin ~Pk d'o (ilk r) exp (i @kt - ~/'k)) " (7) 
O ( t ,  r) - ~r - - - - - - i f - -Re A (r0) 

k=l 

A (to) = So qSkro) - h d t  qS~ro) ; ~k = i V ~ k / a  ; h~ = ~ / ~ .  

Here Jo(z )  and dt (z) are zeroth-order Bessel functions. 
For the cylindrical cavity r0 -< r < oo (Fig. Ib), the condition at infinity O(t, oo) = 0 in formula (5) yields 

c2(p) = 0 and O(p, r) = c(p)FlOSkr) .  With the same assumptions made, similar calculations lead to an expression 

for the oscillating part of the solution for the body with a cylindrical cavity: 

200 ~ sin g'k rl (ilk r) (8) 
- -  R e  ~ e x p  ( i  (oJkt  - -  V / D )  ; O ( t , r ) - -  jr k=l k A(r0) 

A (ro) = r I (flkro) - h k r  I (flkro) ; 0 0 = q o / a .  

The most general statement of the problem for periodic pulsed heating of a hollow cylinder r t < r <_ r2 (Fig. lc), 

in which relations (7) and (8) represent the particular cases, consists in introducing heat sources qt and q2 acting, 

respectively, on internal and external surfaces of the cylinder. The boundary conditions for Eq. (I) and the time 

dependence of heat fluxes on the internal j = 1 and external j -- 2 surfaces are of the form 
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Fig. 2. Form of temperature fluctuations developing with heating of solid and 

hollow cylinders and a cylindrical cavity. 

[ 0o ] (- 1)J,~-~T+,~o =~j(t); ~ j ( t )=-~ j+q j ( t ) ;  
r=rj 

(9) 

q j 0; O<-t<- tlu, q j ( t ) = q j ( t + v t j n ) ,  
q j ( t )=  O; t j u < t < t j n  , v = l ,  2 . . . .  ; j = l ,  2.  

Passing in (9) to the transforms, we obtain a system for determination of the unknown coefficients c i = 

C i ( p )  of solution (5) 

~] [(_ 1)J~v,-~p ri(ur) + r ~ o ] c  = ~ ( p ) / ~ ;  (Io) 
i=1,2 

Whence 

(P) = P ]k C]k (qjo sin ~plk/ark) exp ( -  tp]k ) ; 

o~kj = z ~ k / t . j ;  j = 1 , 2  ; ~j~ = =#ej; rj  = t j . / t j . .  

F I / A  = ql [i ~ P 2 (~ur2) + r 2 ~urz) l - q2 [ -  i ~ r 2 (,uq) + r 2 f u q )  ] ; (I 1) 

"~2/A = - q~ [i v ~ p  r~ (~rz) + r~ (ur2) ] + q2 [ -  i ~ r I (~rl) + r~ ~r~) 1. (12) 

Here A -- A(p) is the determinant of system (10). 

Formulas (11)-(12) give a solution of the problem in form of a contour integral 

O ( t ,  r ) -  1 ~176176176 2~i f [Cl (p) F1 (i ~ /p /a  r) + c 2 (p) F z (i ~ r) l A-I (p) exp (pt) dp ; (P0 > 0).  (13) 
Po + i oo 

The expression for the oscillating component of the solution, built from integral representation of (13) with 
the aid of appropriate deformation of the path of integration p ~ ] P0 - ioo, P0 + i~ [ in the region G:larg p l 
< s~ of the complex plane Cp, is as follows: 

_(1) _(2) (14) o (t,  r) = 2 ~, (cj~/A/k) [aj~ r~ q3j~ ~) + ~jk r2 q3jk r) l; 
k=l j=l ,2  
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sCI) , ~ (2)  , F i  , 
lk = hlkF2 (fllkr2) + F2 (fllkr2) ; ~lk = - hl/crl (fll/d'2) - (ill/r2) " 

_(2)  
62i-(I) = h2/F2 (flZtd'l) - F2 (fl2krl) ", 32k = - -  h 2 k F I  (flZkrl) + F I  ( / J Z k r l )  ", 

Ajk = A (Pik) ; hjk = ;tfljk/ce ; fllk = i xl ioaik/a . 

Relations (7), (8), and (14) are valid for arbitrary values of the pulse repetition frequency oa and the pulse 

ratio y. Since the coefficients ~k and -dik are introduced into the formulas in the most general form, the relations 
obtained hold for any piecewise smooth functions q(t) and qy(t) with period tin. The case of harmonic heating 

discussed in [121 for a -- 0 corresponds to k = 1. The case of H-shaped heating (meander) experimentally studied 
in [11, 12] follows from formula (14), if we assume that C2k = 0 and Yl = i /2 .  

Figure 2 shows the characteristic forms of temperature fluctuations O(t) calculated by formulas (7), (8), 

(14) for the surfaces r = ro (a cylindrical cavity and a solid cylinder) and r = r I (a hollow cylinder) for different 

pulse repetition frequencies and sample thickness. 
Curves 1-3 pertain to the periodic pulsed thermal regime, the regular thermal regime of the 2nd kind, and 

the periodic steady thermal regine, respectively. Calculation results are reported for pulse ratio ~o = 0.2. The sample 

thickness and the pulse repetition frequences for the above curves are related as: 61 > 6z > 63; COl > on2 > w3. For 

definiteness, it is assumed that the heat flux over the external surface of the hollow cylinder is q2 = 0; the material 

of the sample is tungsten. For clarity, the curves are normalized to unity and the time scale is given in parts of the 

period tn. The thermophysical constants [13] are used. The calculations show that, as in the case of two- 

dimensional samples [6, 7 ], in periodic pulsed heating of bodies with cylindrical symmetry three quasisteady 

thermal regimes develop, in which the form of the temperature fluctuations O(t, r) remains constant in a sufficiently 
wide range of the pulse repetition frequencies and sample thicknesses. In the cylindrical cavity, as in a half-space, 

only a periodic pulsed heating regime can exist [6 ] when the temperature fluctuations in the heating stage at 

~, __. 1/4  coincide with those calculated by formula [14 ] for a single pulse (curve 1). In the case of solid and hollow 

cylinders all three regimes are realized: periodic-pulse [7 ], regular of the second kind [11, 12 ] (the pulse shape 

depends linearily on time, curve 2), and periodic steady regimes [8 ] (the dependence O(t, r) is a replica of the 

thermal-pulse shape, curve 3). The sequence of passing from one stable thermal regime to another with changing 

of the pulse repetition frequency oa and the sample thickness c~ is shown in the figure. Taking into account the result 

obtained for a plate [7 ], we can assume that stability of the quasisteady thermal regime is determined by Pd -- 

tac~2/a, where the characteristic size 6 (sample thickness) is equal to r 0 for solid and r2 - rl for hollow cylinders. 

For a cylindrical cavity, the characteristic size is infinite and, consequently, Pd ~ Qo. In particular, for the cases 
shown in Fig. 2 Pdl --- 10, Pd2 - 1 0 - 1 - 1 0  -2, and Pd3 --- 10 -6 correspond to curves 1, 2, and 3, respectively. 

Thus, a theoretical study has been made of an oscillating component of the temperature field developing 

on periodic pulsed heating of bodies of cylindrical configuration. A relationship is found between the form of 

temperature fluctuation and the body geometry. It is shown that, as in the one-dimensional case, only three 

quasisteady thermal regimes exist, which do not change with the pulse repetition frequency or the sample 

thicknesses. 

N O T A T I O N  

q, specific heat flux; tu and tn, pulse duration and repetition frequency; c~, circular frequency of pulse 

repetition; 7, pulse ratio; ~k, coefficients of Fourier series expansion of heat flux ~(t); T, temperature; T, mean 

temperature; O, oscillating temperature component; F/(z), J0(z), Hankel and Bessel functions of the zeroth order. 
. . 
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